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Theorem (Fabini-Tonelli for FQT) .
Let (X

,
E

, M) and (4
,
5

,
2) be Finite measure spaces.

ht f : X x Y + IR : = ( 0
,
0] be aY - measurable function. Then :

(a) *
x

: Y-TR and F3 : X-> TR are 5 and I-measurable for all xeX and yeY.

16) Tonelli
.

If -0
,

then :

() x(Edw and ye)fdu are E and J-measurable
Y X

(ii) [fxly)drlg(d() = de= Mindy

() Fubini. If F is nxo-integrable then:

() x(Edw and ye)fde are I and 5-measurable and integrable.
Y X

(ii) [fxly)drlg(d() =daddy
Proof

.

We have already proven cal.

For (6)
,

we have down it for indicator functions
,

so the linearity of the integral implies

(8) for simple . Finally , any IQ5-measurable function fro is an increasing limit

of simple fuctions
,

so (b) follows by MCT.



For (c)
,
write feft-f and note that bath ft

,
-are integrable ,

and

apply part let be and: The only thing to mote is that the functions

x It J do and yet (f)
"

du are finite a .
e

. by 16 become

=Add

Infinite product spaces.

let I be an index set
, possibly unuthl and let (Xi

,
Bi

,Milies be a sequence
of measure spaces. We would like he define a measure n on the product

X:= MX:
·

it I

Firstly ,
we letB be the Falgebra generated by LitBi] := BixTX]

jet(i)
where it I

,
Bie Bi .

We would like in to extend the finite products

Mi
.

* Mi .. xMin for,,
In EI distinct

,
i

.

e.

u((i , it Bi, ...,
in t Bin3) = M(Bi) · M(Bin ..... MBi). It M(Xi)()

where
itIVi

..., int

(ii Bi
, ...,

in It Bin] : (itBi] 1 ...
1 (in it Bin]·

To ensure hot cylinders can have finite monzero measure
,

we need that all but

and below

finitely many by are finite and in fact bounded above
.

Since we handled



finite products,
we can restrict our attention to the case that each M,

is a

probability measure.

To prove the existence of such a measure l satisfying (,
let A be the algebra

generated by the cylinders and note
,

an usual
,

Not each AEA is a finite

disjoint union of cylinders. Thus
,

in the usual fastion we

may
define a finitely

additive measure in onA satisfying (6)
.

This is done by the factNot

and finite union of cylinders has all finitely may
coordinates equal to Xi

,
so

the statements of well-definedmen and finite additivity reduces to hot for

finite products ,
which we already proved

Finite additivity impliestbl super-additivity :

M(YAn) = [M(Au)
NEIN

whenever LAnEA
,
fr AnEA .

Thus
,

we only need to dow but
nEIN

h is also atbly cabadditive.

Theorem (Ralentani 1943)
. M is atbly subadditive

,
hence by Carathcodory's Mum,

the is a unique probability measure on B satisfying (*)
,

for arbitrary pro-

bability spaces (Xi
,
Bi

,
Mi).



Remark
.

This theorem was proved by Kolmogorov in 1933 for EFIN and (Xi
,
Bi

,M =

10
, 1), B(0,

1)
,
X) and is known as the Kolmogoror consistency theorem

.

It was later extent

ded by Wood in 1938 to include other Bore) probability measures on 10
,

17
.

All

these proofs relied on the regularity and lightness of the involved measures
,

which are

inherently topological notions ,
but Kakutani found a topology-free proof.

Proof of a special case of Kakutani's theorem : the Kolmogorov consistency theorem.

We only prove in the case that I := IN and each (Xi
,
Bi

, Mi) in standard,
hence by the Bore isomorphism theorem

,
we may assume that Xi = I' and My is strongly

regular andLight. To show the ctbl subadditivity of M on the algebra A ,
it is enough

to show that if A and the An are cylinders with A = 21 An then M(A)= M(An).
neIN

We do the usual trick of replacingA with a compact and the An with open cets.

It A = Box B
,

+

...
x Bex #X; and An = BroxBusx ... Bren * TXi

. By lightness,
is h istn

there are compact Lets Ki = Bj with M/Pe MIBJ ,
so MIA)asM(A) , where A :=

RoxKix ... Kex #TXi · By strong regularity ,
there are open sets Unj > Buy wil Milny =

is h j

~ -M+)
. Yen M(Bnj) , so /An)a-. M(An)

,
where En := Uno * Unix ...

" Unen* #T X:.
is In

By the definition of product topology (look up) ,
the An are open,

and by Tychonoff's their

em
,
A is compact .

Since A-VAn ,

here is a finite NEIN such that As UAn
Thus

, M(A) n M(A) = MINAn)M(En)-M(An) Fai ZeNM(An).



Birkhoff ergodic theorem.

let IX
,
B

, m) be a probability space and T : X + X be a B,
B) -measurable

-

preserving transformation. Recall that a set S2X is called T-invariant if it

is a unior of T-orbits
; equivantly T"(S) = S. Finally ,

recall thatT is said do

be ergodic if every Tinvariant set in B is well or conull
.

In particular , ergocity
is a global property : we needbe check something for every T-invariant set

in B
. The following famoustheorem translates his global property into a

local finitary property at a
.

e
. point of X .

The first version of it is due to

Birkhoff (1931)
, inspired by a weaker result of von Neumann .

This theore is

considered the birth of ergodic theory
.

Classical pointwise ergodic theorem (Birkhoff 1931. Let (X
,

B
,

M) be a probability space

and T : X-3X be a (B
,

B) - measurable transformation that preserves M ,
i

.
e.

AIT"(s() = M(s) for all SEB
.

Then T is ergodic iff for each fel'(X
, p),

i 10 = 3 2.
S(*) lim Anf(x) = Step a

.
e

.
xEX, ·

Is isX
n> &

N

where Anf(x) := the
average off over (x,

x
, . . .

,
T*x)= ).

The direction of this theorm is rather trivial :



Profot =
.

Let SEC be a T-invariant set
.

Then fo- Eg is constant on

ever,
orbit of T

,
with values either 0 or

1
. Hencehim Als is either

D
or 1 . By (8) , limAns = SAsdu = MS)

,
so fels) is 8 0-

The moutrivial direction =>
says that for an egodic

T

,
time

averages And converge to
a spatial average (fdM.

In other words
,

the global statistic (fd can be seem by examining

itbly many points 3x ,
Ex

, ...,
Thx

, Th . . .) =: We boward T-orbit of x

Next time we will give applications of this powerful theorem and give a

chort and modern proof of the montrivial direction =


